Persistent Bloom Filter: Membership Testing for the Entire History

نویسندگان

  • Yanqing Peng
  • Jinwei Guo
  • Feifei Li
  • Weining Qian
  • Aoying Zhou
چکیده

Membership testing is the problem of testing whether an element is in a set of elements. Performing the test exactly is expensive space-wise, requiring the storage of all elements in a set. In many applications, an approximate testing that can be done quickly using small space is often desired. Bloom filter (BF) was designed and has witnessed great success across numerous application domains. But there is no compact structure that supports set membership testing for temporal queries, e.g., has person A visited a web server between 9:30am and 9:40am? And has the same person visited the web server again between 9:45am and 9:50am? It is possible to support such “temporal membership testing” using a BF, but we will show that this is fairly expensive. To that end, this paper designs persistent bloom filter (PBF), a novel data structure for temporal membership testing with compact space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Cuckoo Filter Modification Inspired by Bloom Filter

Probabilistic data structures are so popular in membership queries, network applications, and so on. Bloom Filter and Cuckoo Filter are two popular space efficient models that incorporate in set membership checking part of many important protocols. They are compact representation of data that use hash functions to randomize a set of items. Being able to store more elements while keeping a reaso...

متن کامل

Two-tier Bloom filter to achieve faster membership testing

Introduction: Bloom filters [1] are a space-efficient, probabilistic data structure for representing a list of elements (for example, a list of strings). A Bloom filter is an array of m bits. A string is mapped into a Bloom filter by inputting it to a group of k hash functions resulting in k array positions. Each indexed array position is set to 1. A string is tested for membership by inputting...

متن کامل

On the analysis of Bloom filters

The Bloom filter is a simple random binary data structure which can be efficiently used for approximate set membership testing. When testing for membership of an object, the Bloom filter may give a false positive, whose probability is the main performance figure of the structure. We complete and extend the analysis of the Bloom filter available in the literature by means of the γ-transform appr...

متن کامل

Fast Dynamic Multiset Membership Testing Using Combinatorial Bloom Filters

In this paper we consider the problem of designing a data structure that can perform fast multiset membership testing in deterministic time. Our primary goal is to develop a hardware implementation of the data structure which uses only embedded memory blocks. Prior efforts to solve this problem involve hashing into multiple Bloom filters. Such approach needs a priori knowledge of the number of ...

متن کامل

Adaptive Bloom Filter

A Bloom filter is a simple randomized data structure that answers membership query with no false negative and a small false positive probability. It is an elegant data compression technique for membership information, and has broad applications. In this paper, we generalize the traditional Bloom filter to Adaptive Bloom Filter, which incorporates the information on the query frequencies and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018